Intro to Web Analysis

O O

O

Web Applications are fundamental in today’s society.
In this workshop we will introduce you to how to analyse an application
to find its vulnerabilities.

We will be covering three types of attack: XSS, SQLI and Logic
Vulnerabilities, and to access the laboratories included in the workshop
we advise you to create an account on

We will also explain the basics of how the HTTP protocol exchanges data
across client and server.

SQLI

XSS

Logical

To analyse a service and discover its vulnerabilities, every challenger
needs a good set of tools they can rely on. Here are some of the most
used tools in the community:

DevTools

Burp Suite
cURL
Python
CyberChef

DevTools

DevTools is an analysis and logging tool incorporated in every browser.
In most browsers you can open it by pressing F12 or right clicking on the

page.

With this tool you can easily view all the elements in your page, but more
importantly you can check all the network requests that occur in real

time.

DevTools also allow you to open and edit the page’s cookie storage that

n Elements Console Sources Network Performance Memory Application

K

Above you can see the available tabs (and therefore main features) of the
DevTools.

Burp Suite

Burp or Burp Suite is a graphical tool for testing Web application security.
It provides a set of tools that simplify the network analysis.

The proxy, allows logging, editing and control of ongoing data transfers.

The repeater, allows to forward a modified version of previously logged
requests.

The decoder, helps encoding and decoding the data
in several formats.

user customise their experience.

All these tools can be set up in a workflow to let the -, HD

Python Requests and cURL

Another important tool at every coder’s disposal is the requests module
for python.

This module allows you to easily send HTTP requests programmatically,
therefore exchanging data between e

your attacking client and the attacked
server in an automated manner.

For those who are more comfortable e
with using a terminal, one of the best alternatlves is
cURL.

This is a more sophisticated networking library
that in our case can be very useful to quickly
send headless requests without creating a script.

The HTTP protocol is the foundation of data communication for the web.
The basics of its structure:

POST /endpoint? HTTP/2
Host: polito.it

Cookie: Cookie Data

Method Path

Headers + Cookies

Data sent to the server

Generally Method and Path define request type and the location of the
website we want to access

POST /dashboard/files HTTP/2

Headers are used for control data such as connection management
(keepalives, proxy information) or the type of data that can be received.

User-Agent: curl/7.54.0 // The fingerprint of the
client sending the request

Accept: application/json // The content type that
1s understandable by the client

Data sent to the server

Most of the time, the "critical" data is sent in , Cookies and

The are used to specify the resource:
/dashboard/files?

All requests are stateless, and we use cookies to create "requests sessions".
Cookies acts as a storage in the client's computer and most of the time are used
to store access keys, session IDs and functional data. This is a key-value storage
type, similar to dictionaries in python. In computer science this is called an
associative list.

As example, when someone logs into a website with their credentials the server
is most likely to set a cookie with a session ID to identify the user as logged in.

The session ID is sent to the server in every request to identify the client, and the
server matches it against a session storage to recognize the data linked to that
ID.

There is a plenty of different types of vulnerabilities that affect web
applications since developers tend to use different languages and
frameworks blended together to create web applications.

The common application spotify uses at least seven different languages
for its subcomponents, that communicate together to server its users a
proper experience.

Some of the most common vulnerabilities include:

XSS, also known as Cross-Site Scripting
SQLI also known as SQL Injection

Logic Vulnerabilities

Path Traversal

XSS

XSS also known as Cross-Site Scripting, has been and continues to be a
very common in forums, chats and other social media.

This happens when an attacker is able to inject some in the
page that has to be rendered by the client.

An example is Twitter, in the past, users could send posts with
inside it:

Hello there!

XSS

Hello there!

When any client renders the page all the is also processed and
the code is executed; in our example the code sends the session cookie
to a remote server. This would allow the attacker to

A very common technique implies using event handlers such as onload,

onhover and onerror to trigger some javascript code.

DOM Injection

XSS is also known as an HTML Injection attack, since in its most basic
form it requires the attacker to inject scripts into the page.

Similarly to what we do with SQL Injections, it’s useful to find an
injectable field (usually search fields, username fields, src tags or similar)
and try to close the field to inject the scripts.

When you send the form, there is a chance that a malformed page may
execute these types of specific

DOM Injection

<div><img src=" "</div>
That gets then interpreted as:

<div><img src=" "</div>

There are many ways to avoid XSS vulnerabilities, one of the easiest is
the implementation of a good sanitizer, a function that reads the user

input and removes or encodes specific characters that can create
problem.

If we try to strip all the double quotes from our payload as example, the
server won’t be affected by our exploit anymore.

SQL Injection

SQL Injections exploits weak server endpoints, that query a SQL

Database by sending to gain
access to parts of the database that should otherwise be inaccessible.

As example, say that this is the server code:
Sprod id = $ GET["product id"];
$sgl = "SELECT * FROM Products WHERE product id

=".Sproduct id." AND public=1";

What happens if we send this payload?

20

SQL Injection

This is what will be interpreted by the server:

SELECT * FROM Products WHERE product 1d = 20

AND public=1

We used the double hyphen to comment all the query after them.
This will exclude the public=1 check.

If the application is weak enough to execute two commands in a row,

then the result will be that the server will first query for its necessary

data, and then delete the table.

Blind SQL Injection

There are some cases in which we are not able to directly visualize the
output of the server and the query that is being executed on the database.

This type of attack is called Blind SQL Injection and requires the use of tricky
mechanisms to understand whether the data we are sending is correct or not,
such as

. We can then evaluate the time between when we sent a particular
payload and when we receive the response and evaluate how to proceed.

Another example could be using

In this type of vulnerabilities, many times the attacker needs to brute force its
way to a correct result using these techniques.

Logic vulnerabilities

Logic vulnerabilities are not limited to web applications, but to any type
of application.

Say as example that a server is authorizing a client to perform a certain
action once, but that said authorisation does not expire after the action,
then the client will be able to send the same request different times

without the server noticing, therefore repeating the action multiple times.

This is dangerous in time limited applications or applications that store
transaction data without properly protecting them.

Thank you for the attention

